Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Front Cell Dev Biol ; 11: 1173575, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37187621

RESUMO

Infertility is a global health concern inflicting a considerable burden on the global economy and a severe socio-psychological impact. Approximately 15% of couples suffer from infertility globally, with a male factor contribution of approximately 50%. However, male infertility remains largely unexplored, as the burden of infertility is mostly assigned to female people. Endocrine-disrupting chemicals (EDCs) have been proposed as one of the factors causing male infertility. Pyrethroids represent an important class of EDCs, and numerous studies have associated pyrethroid exposure with impaired male reproductive function and development. Therefore, the present study investigated the potentially toxic effects of two common pyrethroids, cypermethrin and deltamethrin, on androgen receptor (AR) signaling. The structural binding characterization of cypermethrin and deltamethrin against the AR ligand-binding pocket was performed using Schrodinger's induced fit docking (IFD) approach. Various parameters were estimated, such as binding interactions, binding energy, docking score, and IFD score. Furthermore, the AR native ligand, testosterone, was subjected to similar experiments against the AR ligand-binding pocket. The results revealed commonality in the amino acid-binding interactions and overlap in other structural parameters between the AR native ligand, testosterone, and the ligands, cypermethrin and deltamethrin. The estimated binding energy values of cypermethrin and deltamethrin were very high and close to those calculated for AR native ligand, testosterone. Taken together, the results of this study suggested potential disruption of AR signaling by cypermethrin and deltamethrin, which may result in androgen dysfunction and subsequent male infertility.

2.
PLoS Negl Trop Dis ; 17(5): e0011324, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37253018

RESUMO

BACKGROUND: Pregnancy is a metabolically challenging state with increased nutritional demand. Thiamine is an important cofactor in various metabolic pathways and thus its deficiency could have a serious impact on both maternal and fetal outcomes. Kashmir has thiamine deficiency in endemic proportions, with multiple reports of infantile beriberi, postpartum neuropathy, and gastric beriberi. This prompted us to assess the extent of the burden of thiamine deficiency during pregnancy. METHODS: This cross-sectional study was conducted for a period of two years in pregnant women attending the antenatal clinic. A demographic, clinical, biochemical, and dietary assessment was done in all participants. The whole blood thiamine levels were assessed by high-performance liquid chromatography. RESULTS: A total of 492 participants were included in the study with a mean age of 30.30±4.57 years and a mean BMI of 24.25±3.32 Kg/m2. The mean whole blood thiamine level of all participants was 133.29±14.32 nmol/L. Low thiamine status was present in 38.2% (n = 188) of participants. Participants with low thiamine had poor perinatal outcomes, with 3.1% (n = 6) reporting early infant death. CONCLUSION: A high prevalence of thiamine deficiency occurs in pregnant women of Kashmir. Low thiamine is associated with poor nutritional status as well as poor perinatal outcomes. TRIAL REGISTRATION: CTRI/2022/07/044217.


Assuntos
Beriberi , Deficiência de Tiamina , Lactente , Feminino , Humanos , Gravidez , Adulto , Beriberi/complicações , Prevalência , Estudos Transversais , Deficiência de Tiamina/epidemiologia , Deficiência de Tiamina/complicações , Tiamina
3.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36834711

RESUMO

Polybrominated diphenyl ethers (PBDEs) are a common class of anthropogenic organobromine chemicals with fire-retardant properties and are extensively used in consumer products, such as electrical and electronic equipment, furniture, textiles, and foams. Due to their extensive use, PBDEs have wide eco-chemical dissemination and tend to bioaccumulate in wildlife and humans with many potential adverse health effects in humans, such as neurodevelopmental deficits, cancer, thyroid hormone disruption, dysfunction of reproductive system, and infertility. Many PBDEs have been listed as chemicals of international concern under the Stockholm Convention on Persistent Organic Pollutants. In this study, the aim was to investigate the structural interactions of PBDEs against thyroid hormone receptor (TRα) with potential implications in reproductive function. Structural binding of four PBDEs, i.e., BDE-28, BDE-100, BDE-153 and BDE-154 was investigated against the ligand binding pocket of TRα using Schrodinger's induced fit docking, followed by molecular interaction analysis and the binding energy estimation. The results indicated the stable and tight binding of all four PDBE ligands and similarity in the binding interaction pattern to that of TRα native ligand, triiodothyronine (T3). The estimated binding energy value for BDE-153 was the highest among four PBDEs and was more than that of T3. This was followed by BDE-154, which is approximately the same as that of TRα native ligand, T3. Furthermore, the value estimated for BDE-28 was the lowest; however, the binding energy value for BDE-100 was more than BDE-28 and close to that of TRα native ligand, T3. In conclusion, the results of our study suggested the thyroid signaling disruption potential of indicated ligands according to their binding energy order, which can possibly lead to disruption of reproductive function and infertility.


Assuntos
Éteres Difenil Halogenados , Infertilidade Masculina , Masculino , Humanos , Ligantes , Hormônios Tireóideos
4.
Toxics ; 10(5)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35622676

RESUMO

Many endocrine-disrupting chemicals (EDCs) have a ubiquitous presence in our environment due to anthropogenic activity. These EDCs can disrupt hormone signaling in the human and animal body systems including the very important hypothalamic-pituitary-thyroid (HPT) axis causing adverse health effects. Thyroxine (T4) and triiodothyronine (T3) are hormones of the HPT axis which are essential for regulation of metabolism, heart rate, body temperature, growth, development, etc. In this study, potential endocrine-disrupting activity of the most common phthalate plasticizer, DEHP, and emerging non-phthalate alternate plasticizers, DINCH, ATBC, and DEHA against thyroid hormone receptor (TRα) were characterized. The structural binding characterization of indicated ligands was performed against the TRα ligand binding site employing Schrodinger's induced fit docking (IFD) approach. The molecular simulations of interactions of the ligands against the residues lining a TRα binding pocket, including bonding interactions, binding energy, docking score, and IFD score were analyzed. In addition, the structural binding characterization of TRα native ligand, T3, was also done for comparative analysis. The results revealed that all ligands were placed stably in the TRα ligand-binding pocket. The binding energy values were highest for DINCH, followed by ATBC, and were higher than the values estimated for TRα native ligand, T3, whereas the values for DEHA and DEHP were similar and comparable to that of T3. This study suggested that all the indicated plasticizers have the potential for thyroid hormone disruption with two alternate plasticizers, DINCH and ATBC, exhibiting higher potential for thyroid dysfunction compared to DEHA and DEHP.

5.
J Appl Toxicol ; 42(5): 841-851, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34725837

RESUMO

The human exposure to diverse endocrine-disrupting chemicals (EDCs) has increased dramatically over several decades with very adverse health effects. Plasticizers and flame retardants constitute important classes of EDCs interfering in endocrine physiology including the thyroid function. Thyroxine (T4) is an important hormone regulating metabolism and playing key roles in developmental processes. In this study, six phthalate and nonphthalate plasticizers and one flame retardant (BDE-153) were subjected to structural binding against thyroxine-binding globulin (TBG). The aim was to understand their potential role in thyroid dysfunction using structural binding approach. The structural study was performed using Schrodinger's induced fit docking, followed by binding energy estimations of ligands and the molecular interaction analysis between the ligands and the amino acid residues in the TBG ligand-binding pocket. The results indicated that all the compounds packed tightly into the TBG ligand-binding pocket with similar binding pattern to that of TBG native ligand, T4. A high majority of TBG interacting amino acid residues for ligands showed commonality with native ligand, T4. The estimated binding energy values were highest for BDE-153 followed by nonphthalate plasticizer, DINCH, with values comparable with native ligand, T4. The estimated binding energy values of other plasticizers DEHP, DEHT, DEHA, ATBC, and TOTM were less than DINCH. In conclusion, the tight docking conformations, amino acid interactions, and binding energy values of the most of the indicated ligands were comparable with TBG native ligand, T4, suggesting their potential for thyroid dysfunction. The results revealed highest potential thyroid disruptive action for BDE-153 and DINCH.


Assuntos
Disruptores Endócrinos , Retardadores de Chama , Disruptores Endócrinos/toxicidade , Retardadores de Chama/toxicidade , Humanos , Ligantes , Plastificantes/metabolismo , Bifenil Polibromatos , Tiroxina , Globulina de Ligação a Tiroxina/metabolismo
6.
Biology (Basel) ; 10(2)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670303

RESUMO

Endocrine-disrupting chemicals (EDCs) are a serious global public health and environmental concern. Pyrethroids are insecticide chemicals that are extensively used for crop protection and household purposes but have been identified as EDCs. On account of their ubiquitous environmental presence, human exposure occurs via food, dermal, or inhalation routes and is associated with health problems, including reproductive dysfunction. Permethrin is the most commonly used pyrethroid, and with two chiral centers in its structure, it has four stereoisomeric forms (two enantiomer pairs), i.e., permethrin (1R,3R)-cis, permethrin (1R,3S)-trans, permethrin (1S,3S)-cis, and permethrin (1S,3R)-trans. The current study was performed for predicting the potential endocrine-disrupting activity of the aforementioned four stereoisomers of permethrin against the androgen receptor (AR). The structural binding characterization and binding energy estimations in the AR binding pocket were done using induced fit docking. The structural binding data indicated that all stereoisomers were placed stably in the AR binding pocket and that the estimated binding energy values were comparable to the AR native ligand, except for permethrin (1S,3S)-cis. Furthermore, the commonality in the amino acid interactions to that of the AR native ligand and the binding energy values suggested the potential AR-disrupting activity of all the stereoisomers; however, stereoselective differences were not observed. Taken together, the results suggest that human exposure to permethrin, either as a racemate mixture or in individual stereoisomer form, could potentially interfere with AR function, which may lead to male reproductive dysfunction.

7.
Toxics ; 8(4)2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33302356

RESUMO

Diethylhexyl phthalate (DEHP) is a commonly used plasticizer in the manufacture of polyvinyl chloride plastics for household and commercial use. DEHP is a ubiquitous ecocontaminant and causes developmental and reproductive problems in children and adults. After exposure, DEHP is metabolized by endogenous hydrolysis and oxidation into the primary metabolite, mono-(2-ethylhexyl) phthalate (MEHP), and the secondary metabolites, mono-(2-ethyl-5-hydroxhexyl)phthalate (5-OH-MEHP), mono-(2-ethyl-5-oxohexyl) phthalate (5-oxo-MEHP), mono-(2-ethyl-5-carboxypentyl) phthalate (5-cx-MEPP), and mono-[(2-carboxymethyl)hexyl] phthalate (2-cx-MMHP). Very few studies have been reported on the adverse effects of DEHP metabolites, and the available information indicates that the metabolites might also be equally or more active as compared to the parent compound. In the present study, induced fit docking was used for structural binding characterization of the above five DEHP metabolites with androgen receptor (AR) to predict the potential endocrine-disrupting effects of these metabolites in AR signaling. All the DEHP metabolites interacted with the ligand-binding pocket of AR forming amino-acid residue interactions, hydrogen bonding, and pi-pi interactions. The binding energy of DEHP with AR was similar to that of native ligand testosterone. The amino-acid residue interactions of DEHP metabolites had 91-100% similarity compared to that of testosterone. In addition, all the DEHP metabolites and testosterone showed a common hydrogen bonding interaction with amino-acid Arg-752 of AR. Taken together, the structural binding data in the present study suggested the potential for DEHP metabolites to disrupt AR signaling, which may lead to androgen-related reproductive dysfunction.

8.
Environ Sci Pollut Res Int ; 27(30): 37866-37876, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32613508

RESUMO

Polybrominated diphenyl ethers (PBDEs) are synthetic brominated flame retardants with extensive applications in daily-life consumer products. However, PBDEs have become ubiquitous environmental contaminants due to their leach-out capability. The hazardous human health effects and endocrine-disrupting activity of PBDEs have led many governmental organizations to impose ban on their manufacture, causing their gradual phase out from commercial products. However, PBDEs and their metabolites are still being detected from biological and environmental samples owing to their persistence and bioaccumulation. The PDBE metabolites in these samples are present in concentrations often higher and even with higher toxic potential than parent PBDEs. The two commonly detected environmental PBDE congeners, 2,2',4,4'-tetra-bromodiphenyl ether (BDE-47) and 2,2',4,4',5-penta-bromodiphenyl ether (BDE-99), and their HO- and MeO- metabolites were considered in this study for their potential disrupting activity on thyroid hormone transport. Specifically, the study involved structural binding characterization of BDE-47 and BDE-99 including their two HO- and two MeO- metabolites with thyroxine-binding globulin (TBG), which is the main thyroid hormone transport protein in blood. The results showed that the binding pattern and molecular interactions of above two PBDEs and their metabolites exhibited overall similarity to native ligand, thyroxine in dock score, binding energy, and amino acid interactions with TBG. The BDE-99 and its metabolites were predicted to have stronger binding to TBG than BDE-47 with the metabolite 5-MeO-BDE-99 showing equal binding affinity to that of thyroxine. It is concluded that BDE-47 and BDE-99 and their metabolites have the potential to disrupt thyroid hormone transport and interfere in thyroid function.


Assuntos
Retardadores de Chama , Doenças da Glândula Tireoide , Éteres Difenil Halogenados , Humanos , Tiroxina
9.
Arch Physiol Biochem ; 126(4): 300-307, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30406686

RESUMO

This study is undertaken to investigate the effects of naringenin on doxorubicin- (Dox) induced nephrotoxicity in Wistar rats. Dox 10 mg/kg body weight was administered intraperitoneally once and naringenin 50 and 100 mg/kg body weight was administered orally daily for 21 d. Dox-induced oxidative stress lead to steep elevation in blood urea nitrogen (BUN), creatinine, lactate dehydrogenase (LDH), and kidney injury molecule-1 (KIM-1), compared to control, treatment with naringenin preserved kidney functions. With Dox treatment significant decrease in antioxidant enzymes with increase in malondialdehyde (MDA) compared to control was observed. Naringenin treatment reversed these values compared to Dox in kidney tissue. Dox treatment showed increased tissue nitric oxide levels naringenin treatment decreased nitric oxide (NO) in kidney tissue. Furthermore, Dox-induced inflammatory burst as indicated by up-regulation of nuclear factor-κB (NF-κB), tumour necrosis factor-α (TNF-α) tissue levels and prostaglandin-E2 (PGE-2). All such events were normalised back to normal by naringenin treatment.


Assuntos
Doxorrubicina/efeitos adversos , Flavanonas/farmacologia , Rim/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Citoproteção/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Inflamação/metabolismo , Rim/citologia , Rim/metabolismo , Masculino , Malondialdeído/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/biossíntese , Ratos , Ratos Wistar
10.
Saudi Pharm J ; 27(5): 664-672, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31297021

RESUMO

Quorum sensing is an important regulatory factor of P. aeruginosa virulence induction such as BF, motility, formations of proteases, pyocyanin, and some toxins. The aim of the current study is to detect the effect of the pet.ether extract from onion husk and compound drive from it on quorum sensing and virulence formations of P. aeruginosa. Quorum sensing inhibiting effect of the pet.ether extract of onion husk and a compound drive from it, was evaluated by C. violaceum reporter using dilution method as well as an antioxidant by using DPPH. The efficacious of: Quorum sensing inhibiting on pet.ether fraction and compound derived from it, were investigated for their activities toward biofilm and pyocyanin synthesis as well as motility from P. aeruginosa. The pet.ether fraction and compound derived from it of onion husk exhibited potent antimicrobial, antioxidant and Quorum sensing inhibiting effects. The pet.ether fraction and compound derived from it possesses significant reduction on pyocyanin and biofilm induction of P. aeruginosa. Moreover, they significantly inhibited swimming motilities of P. aeruginosa. For the first time, our study showed the medical importance of Allium cepa L. as antimicrobial, antioxidant as well as Quorum sensing inhibiting and virulence suppressors of P. aeruginosa. Thus, these might emphasized on Allium cepa L as a natural source for attenuating toxins of the Pseudomonas.

11.
Environ Toxicol ; 34(5): 610-625, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30720227

RESUMO

Colorectal cancer is one of the most common cancers worldwide. Development of naturally occurring inexpensive and safe alternatives can be effective in suppressing colon related proliferations. Zingerone (4-[4-hydroxy-3-methylphenyl] butan-2-one), a polyphenolic alkanone of ginger, has massive pharmacological properties and thus can be used as promising candidate against various ailments. In the current study, we aimed at demonstrating the protective effect of zingerone against experimental colon carcinogenesis and elucidating its possible mechanism by studying inflammatory and Nrf-2 signaling cascade. Four groups of animals (I-IV) were made with six animals each. Group I (control) was given normal saline orally. Group II was given 1,2-dimethylhydrazine (DMH) at the dose rate of 20 mg/kg body weight. Group III and IV were treated with DMH at the dose rate of 20 mg/kg body weight and also received oral treatment of zingerone at a dose rate of 50 and 100 mg/kg body weight, respectively, for first 5 weeks and animals were euthanized after 16 weeks. Our results reveal that DMH treated rats exhibited elevated ROS and MDA levels, increased activity of cytochrome P450 2E1 and serum marker enzyme carcinoembreyonic antigen (CEA), increased no of aberrant crypts of foci (ACF), and elevated expression of inflammatory and proliferative proteins. Nrf-2 was downregulated by DMH treatment. Treatment with zingerone to DMH treated rats, resulted in alterations in the activity of the cytochrome P450 2E1 and CEA. In addition, immunostaining of NF-kB-p65, COX-2, iNOS, and PCNA, Ki-67 was suppressed by zingerone. Furthermore, zingerone administration also attenuated the level of IL-6 and TNF-α and it also helps in preserving mucous layer. Thus, zingerone could be considered as a good chemopreventive agent in experimental model of colon carcinogenesis. Further studies are required to study other pathways involved in colon carcinogenesis and their modulation buy zingerone.


Assuntos
Focos de Criptas Aberrantes/prevenção & controle , Anticarcinógenos/uso terapêutico , Carcinogênese/efeitos dos fármacos , Neoplasias do Colo/prevenção & controle , Guaiacol/análogos & derivados , 1,2-Dimetilidrazina , Animais , Guaiacol/uso terapêutico , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , Ratos , Ratos Wistar
12.
J Dairy Res ; 85(4): 460-464, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30136638

RESUMO

Lactoperoxidase (LPO) is an antimicrobial protein present in milk that plays an important role in natural defence mechanisms during neonatal and adult life. The antimicrobial activity of LPO has been commercially adapted for increasing the shelf life of dairy products. Immobilization of LPO on silver nanoparticles (AgNPs) is a promising way to enhance the antimicrobial activity of LPO. In the current study, LPO was immobilized on AgNPs to form LPO/AgNP conjugate. The immobilized LPO/AgNP conjugate was characterized by various biophysical techniques. The enhanced antibacterial activity of the conjugate was tested against E. coli in culture at 2 h intervals for 10 h. The results showed successful synthesis of spherical AgNPs. LPO was immobilized on AgNPs with agglomerate sizes averaging approximately 50 nm. The immobilized conjugate exhibited stronger antibacterial activity against E. coli in comparison to free LPO. This study may help in increasing the efficiency of lactoperoxidase system and will assist in identifying novel avenues to enhance the stability and antimicrobial function of LPO system in dairy and other industries.


Assuntos
Enzimas Imobilizadas/farmacologia , Escherichia coli/efeitos dos fármacos , Lactoperoxidase/farmacologia , Nanopartículas Metálicas/química , Prata/química , Antibacterianos/química , Antibacterianos/farmacologia , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Lactoperoxidase/química , Lactoperoxidase/metabolismo
13.
Anticancer Res ; 37(11): 6245-6249, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29061807

RESUMO

BACKGROUND/AIM: Lactoperoxidase (LPO) is an antimicrobial protein present in milk, saliva, gastric secretions, tears and upper respiratory tract secretions. LPO constitutes an important enzyme of the human immune defense system. However, LPO has also been suggested to be involved in breast cancer etiology through production of reactive free radicals and activation of carcinogenic aromatic compounds. Aromatic compounds are generally highly lipophilic and thus accumulate in highly fatty breast tissues. The aromatic compounds 4-aminobiphenyl (ABP) and 4,4'-diaminobiphenyl (BZ) are known to have carcinogenic properties. LPO catalyzes their oxidation and converts them into reactive products which bind to DNA and form adducts. These DNA adducts subsequently lead to breast cancer. MATERIALS AND METHODS: The crystal structure of LPO was obtained from Protein Data Bank. Structures of ABP and BZ were retrieved from PubChem database. Induced Fit Docking was performed using glide module from Schrodinger. RESULTS: The present study reports the structural binding of ABP and BZ with LPO using in silico approaches. The amino acid residues of LPO involved in the binding with the two aromatic ligands were characterized and binding energy values were calculated. CONCLUSION: Both ABP and BZ were placed in the substrate binding site present in the distal heme cavity of LPO with good affinity. The binding mode mimicked that of the natural substrate since these compounds did not disturb the water molecule that plays an important role in the oxidation reaction. Thus, the water molecule is potentially available for facilitating the subsequent activation of the aromatic amines to reactive species which may form DNA adducts leading to breast cancer.


Assuntos
Compostos de Aminobifenil/metabolismo , Neoplasias da Mama/induzido quimicamente , Carcinógenos/metabolismo , Adutos de DNA/metabolismo , Radicais Livres/química , Lactoperoxidase/metabolismo , Compostos de Aminobifenil/efeitos adversos , Compostos de Aminobifenil/química , Sítios de Ligação , Neoplasias da Mama/enzimologia , Carcinógenos/química , Adutos de DNA/efeitos adversos , Adutos de DNA/química , Feminino , Humanos , Lactoperoxidase/química , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Oxirredução , Conformação Proteica
14.
Anticancer Res ; 37(11): 6415-6420, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29061827

RESUMO

BACKGROUND: Lactoperoxidase (LPO) is an antimicrobial protein secreted from mammary, salivary and other mucosal glands. It is an important member of heme peroxidase enzymes and the primary peroxidase enzyme present in breast tissues. In addition to the antimicrobial properties, LPO has been shown to be associated with breast cancer etiology. Heterocyclic amines, an important class of environmental and dietary carcinogens, have been increasingly associated with breast cancer etiology. Heterocyclic amines undergo activation in breast tissue as a result of oxidation by LPO. The current study includes three important heterocyclic amines, 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) and 2-amino-1-methy-6-phenylimidazo[4,5-b]-pyridine (PhIP), that have carcinogenic activity. MATERIALS AND METHODS: The structural binding characterization of IQ, MeIQx and PhIP with LPO was done using in silico approaches. Their binding pattern and interactions with LPO amino acid residues were analyzed. RESULTS: The three compounds bound in the distal heme cavity of LPO without replacing the important water molecule required for oxidation of substrate compounds. PhIP displayed lesser binding affinity for LPO in comparison to IQ and MeIQx. The binding mode of heterocyclic amines in distal heme cavity of LPO resembled to that of substrate binding pattern. CONCLUSION: The three heterocyclic amines are suggested to act as LPO substrate. The undisturbed water molecule present in distal heme cavity of the LPO is expected to facilitate the oxidation and activation of the three heterocyclic amines. These activated compounds may potentially bind with DNA in breast tissues forming DNA adducts and may subsequently lead to breast cancer initiation.


Assuntos
Aminas/metabolismo , Neoplasias da Mama/induzido quimicamente , Carcinógenos/metabolismo , Lactoperoxidase/metabolismo , Aminas/química , Aminas/toxicidade , Sítios de Ligação , Neoplasias da Mama/genética , Carcinógenos/química , Carcinógenos/toxicidade , Feminino , Humanos , Lactoperoxidase/química , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade
15.
Anticancer Res ; 36(11): 6117-6124, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27793940

RESUMO

BACKGROUND: Polychlorinated biphenyls (PCBs) are ubiquitous environment-contaminating synthetic chemicals that have been associated with increased risk of hepatic cancer, melanoma, non-Hodgkin lymphoma and cancer of many other body organs. Structural binding analyses of PCB 77 and PCB 118 with peroxisome proliferator-activated receptors (PPARα, PPARß/δ and PPARγ) was performed to predict the association of PCBs with potential disruption of PPAR signaling pathways. MATERIALS AND METHODS: The crystal structures of human PPARα, PPARß/δ and PPARγ were obtained from the Protein Data Bank. Structures of PCB 77 and PCB 118 were obtained from PubChem database. Docking was performed using glide (Schrodinger) induced fit docking (IFD) module. RESULTS: The PCB 77 and PCB 118 interacted with PPARα, PPARß/δ and PPARγ showing an overlapping of 40-58% interacting amino acid residues with synthetic co-complex agonists of the three PPARs. The binding affinity was higher for PCB 118 than for PCB 77 during docking interactions with each of the three PPARs. CONCLUSION: The consistent commonality of interacting residues for PCB 77 and PCB 118 with co-complex synthetic agonists of the PPARs together with good binding affinity suggested that the PPAR signaling pathway is a potential target for toxicologic activity of PCBs.


Assuntos
Carcinógenos/toxicidade , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Bifenilos Policlorados/toxicidade , Humanos , Simulação de Acoplamento Molecular , Receptores Ativados por Proliferador de Peroxissomo/química , Conformação Proteica , Transdução de Sinais
16.
J Appl Toxicol ; 36(5): 741-7, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26879776

RESUMO

Di-(2-ethylhexyl)phthalate (DEHP) is a phthalate plasticizer and is one of the very common endocrine-disrupting chemicals (EDCs) contaminating our ecosystem. It is used for imparting flexibility to plastics and frequently used in personal and industrial products. Clinical and experimental studies have indicated that exposure to DEHP is associated with developmental abnormalities of the reproductive system particularly of male neonates, endometriosis and miscarriage in women, low sperm counts and lower sperm motility and DNA integrity in men, and placental problems with higher rates of low birth weight, premature birth, and fetal loss in laboratory animals. Binding of DEHP to progesterone receptor (PR) represents a potential mechanism of interference in the reproductive functions. DEHP is a chiralmolecule and is available commercially as a racemic mixture of RR, SS and RS stereoisomers. The ability of individual stereoisomers of DEHP to interfere with the reproductive functions of humans and animals is not known and molecular interactions of DEHP stereoisomers with PR are not available. In the present study, in silico approaches were adopted for molecular simulation studies of the three stereoisomers of DEHP with PR. The study suggested that all three stereoisomers of DEHP have the potential to compete with the normal substrate binding of PR. However, the binding of DEHP to PR was stereoselective with RR stereoisomer of DEHP having the best binding characteristics compared with SS, and RS stereoisomers. It has been suggested that stereoselectivity may be employed for improving the safety of the commercial compounds using pure stereoisomers instead of racemic mixtures.


Assuntos
Dietilexilftalato/química , Disruptores Endócrinos/química , Plastificantes/química , Receptores de Progesterona/química , Biologia Computacional , Humanos , Simulação de Acoplamento Molecular , Conformação Proteica , Reprodução/efeitos dos fármacos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA